zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A multi-class multi-mode variable demand network equilibrium model with hierarchical logit structures. (English) Zbl 1048.90039
Gendreau, Michel (ed.) et al., Transportation and network analysis: current trends. Miscellanea in honor of Michael Florian. Dordrecht: Kluwer Academic Publishers (ISBN 1-4020-0488-5). Appl. Optim. 63, 119-133 (2002).
Summary: We consider a multi-class multi-mode variable demand network equilibrium model where the mode choice model is given by aggregate hierarchical logit structures and the destination choice is specified as a multi-proportional entropy type trip distribution model. The travel time of transit vehicles depends on the travel time of other vehicles using the road network. A variational inequality formulation captures all the model components in an integrated form. A solution algorithm, based on a Block Gauss-Seidel decomposition approach coupled with the method of successive averages results in an efficient algorithm which successively solves network equilibrium models with fixed demands and multi-dimensional trip distribution models. Numerical results obtained with an implementation of the model with the EMME/2 software package are presented based on data originating from the city of Santiago, Chile.
MSC:
90B10Network models, deterministic (optimization)
90C47Minimax problems