zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Slice sampling. (With discussions and rejoinder). (English) Zbl 1051.65007

The author describes a class of slice sampling methods that can be applied to a wide variety of distributions. Section 2 summarizes general-purpose Markov chain sampling methods as the Gibbs sampling, the adaptive rejection sampling, the adaptive rejection Metropolis sampling etc.

Section 3 presents the basic ideas of a slice sampling and thoroughly discusses different predecessors more or less connected to it. The principal message of the paper is concentrated in chapters 4–7. At first, simple variable slice samplings methods are described. Then the author concentrates on multivariate slice sampling methods and reflective slice sampling. An example forms the final section.

I liked the paper and I must say that despite it is a paper for Annals of Statistics, the author really concentrates on the ideas and not on the formal proofs as is typical for this journal. I am sure that everybody who want to get an idea of what is slice sampling will be satisfied.

The paper is complemented by an interesting discussion prepared by Ming-Hui Chen, B. W. Schmeiser, O. B. Downs, A. Mira, G. O. Roberts, J. Skilling, D. J. C. MacKey and G. S. Walker.

65C60Computational problems in statistics
65C05Monte Carlo methods
62D05Statistical sampling theory, sample surveys
65C40Computational Markov chains (numerical analysis)