zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Harvesting in a two-prey one-predator fishery: A bioeconomic model. (English) Zbl 1052.92052
Summary: A multispecies harvesting model with interference is proposed. The model is based on Lotka-Volterra dynamics with two competing species which are affected not only by harvesting but also by the presence of a predator, the third species. In order to understand the dynamics of this complicated system, we choose to model the simplest possible predator response function in which the feeding rate of the predator increases linearly with prey density. We derive the conditions for global stability of the system using a Lyapunov function. The possibility of existence of a bioeconomic equilibrium is discussed. The optimal harvest policy is studied and the solution is derived in the equilibrium case using Pontryagin’s maximum principle. Finally, some numerical examples are discussed.
34D23Global stability of ODE
49N90Applications of optimal control and differential games
34D20Stability of ODE
91B76Environmental economics (natural resource models, harvesting, pollution, etc.)