zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity. (English) Zbl 1054.35088
Summary: This paper introduces an extension of the time-splitting sine-spectral method for solving damped focusing nonlinear Schrödinger equations (NLSs). The method is explicit, unconditionally stable, and time transversal invariant. Moreover, it preserves the exact decay rate for the normalization of the wave function if linear damping terms are added to the NLS. Extensive numerical tests are presented for cubic focusing NLSs in two dimensions with a linear, cubic, or quintic damping term. Our numerical results show that quintic or cubic damping always arrests blow-up, while linear damping can arrest blow-up only when the damping parameter δ is larger than a threshold value δ th . We note that our method can also be applied to solve the three-dimensional Gross-Pitaevskii equation with a quintic damping term to model the dynamics of a collapsing and exploding Bose-Einstein condensate.
35Q55NLS-like (nonlinear Schrödinger) equations
65T40Trigonometric approximation and interpolation (numerical methods)
65N12Stability and convergence of numerical methods (BVP of PDE)
65N35Spectral, collocation and related methods (BVP of PDE)
81-08Computational methods (quantum theory)