zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Evaluating the informative quality of documents in SGML format from judgements by means of fuzzy linguistic techniques based on computing with words. (English) Zbl 1056.68079
Summary: Recommender systems evaluate and filter the great amount of information available on the Web to assist people in their search processes. A fuzzy evaluation method of Standard Generalized Markup Language documents based on computing with words is presented. Given a Document Type Definition (DTD), we consider that its elements are not equally informative. This is indicated in the DTD by defining linguistic importance attributes to the more meaningful elements of DTD chosen. Then, the evaluation method generates linguistic recommendations from linguistic evaluation judgements provided by different recommenders on meaningful elements of DTD. To do so, the evaluation method uses two quantifier guided linguistic aggregation operators, the linguistic weighted averaging operator and the linguistic ordered weighted averaging operator, which allow us to obtain recommendations taking into account the fuzzy majority of the recommenders’ judgements. Using the fuzzy linguistic modeling the user–system interaction is facilitated and the assistance of system is improved. The method can be easily extended on the Web to evaluate HyperText Markup Language and eXtensible Markup Language documents.
MSC:
68P20Information storage and retrieval