zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control. (English) Zbl 1058.92047

Summary: We investigate the dynamic behavior of a Holling I predator-prey model with impulsive effect concerning biological and chemical control strategies – periodic releasing natural enemies and spraying pesticides at different fixed time. By using Floquet theorem and small amplitude perturbation method, we prove that there exists an asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value.

The condition for the permanence of the system is given. It is shown that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently. Further, the effects of impulsive perturbations on the unforced continuous system is studied. We find that the system we considered has more complex dynamic behavior and is dominated by periodic, quasi-periodic and chaotic solutions. We also find that our impulsive forced system may have different dynamic behaviors with different range of initial values, with which the solutions of the unforced system tend either to the inherent stable limit cycle or to a stable positive equilibrium.

37N25Dynamical systems in biology
49N25Impulsive optimal control problems
34A37Differential equations with impulses
34C25Periodic solutions of ODE
34C60Qualitative investigation and simulation of models (ODE)
49N90Applications of optimal control and differential games
34D05Asymptotic stability of ODE