zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytic number theory. (English) Zbl 1059.11001
Colloquium Publications. American Mathematical Society 53. Providence, RI: American Mathematical Society (AMS) (ISBN 0-8218-3633-1/hbk). xi, 615 p. $ 79.00 (2004).

The first two sentences of the preface describe the goals of the authors: “This book shows the scope of analytic number theory in classical and modern directions. There are no division lines; in fact our intent is to demonstrate, particularly for newcomers, the fascinating countless interrelations.” Compared with some more or less recent monographs on various branches of analytic number theory such as the zeta- and L-functions with applications to the distribution of primes, exponential and character sums, sieve methods, automorphic functions with spectral theory, Diophantine problems, the circle method, and so on, the range of topics in this comprehensive volume is remarkably wide. Indeed, all the topics mentioned above are covered, among others. There are 26 chapters starting from “Arithmetic Functions” and ending with “Central Values of L-functions”.

Instead of giving the long list of all these 26 headings, let us try to classify these under fewer headings. The reviewer ended up with the following classification (the number after each topic gives the number of those chapters falling under that heading; this decision was not always easy): elementary methods and sieves (4), character and exponential sums (4), arithmetic functions (7), zeta- and L-functions together with Dirichlet polynomials (6), automorphic functions and spectral theory (3), analytic algebraic number theory (2). The emphasis in this monograph is on ideas and methods rather than on “records” in various problems, and the proofs that are chosen to be presented are usually reasonably short, and also illuminating in some general sense.

As to the audience of this text, the authors say having had especially graduate students in mind. True, though the presentation in principle starts more or less from scratch, some sophistications can be best appreciated and enjoyed against the background of certain preliminary familiarity. Here and there one may find novel or unusual lines of argument; for instance, the evaluation of quadratic Gauss sums in Theorem 3.4 is based on van der Corput’s lemma on exponential sums rather than on Poisson’s summation formula. Naturally, it is impossible to keep a treatise of this size and complexity completely free from errors and misprints, but these are mostly easy to spot and correct.

The authors are active researchers with a lot of experience and deep insight, and their creative attitude makes reading particularly rewarding. The very choice of material reflects a modern “global” view of analytic number theory, and hence, even with its encyclopedic wealth of topics, the flavor of this book is not at all encyclopedic. It can be warmly recommended to a wide readership, at various levels of expertise, interested in analytic number theory with its many fascinating “eternal” (?) problems and numerous links to other branches of mathematics.


MSC:
11-01Textbooks (number theory)
11-02Research monographs (number theory)
11LxxExponential sums; character sums
11MxxAnalytic theory of zeta and L-functions
11NxxMultiplicative number theory
11FxxDiscontinuous groups and automorphic forms
11T23Exponential sums
11T24Other character sums and Gauss sums
11R42Zeta functions and L-functions of global number fields