zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fundamentals of mixed quasi variational inequalities. (English) Zbl 1059.49018
Summary: Mixed quasi variational inequalities are very important and significant generalizations of variational inequalities involving the nonlinear bifunction. It is well known that a large class of problems arising in various branches of pure and applied sciences can be studied in the general framework of mixed quasi variational inequalities. Due to the presence of the bifunction in the formulation of variational inequalities, the projection method and its variant forms cannot be used to suggest and analyze iterative methods for mixed quasi variational inequalities. In this paper, we suggest and analyze various iterative schemes for solving these variational inequalities using resolvent methods, resolvent equations and auxiliary principle techniques. We discuss the sensitivity analysis, stability of the dynamical systems and well-posedness of the mixed quasi variational inequalities. We also consider and investigate various classes of mixed quasi variational inequalities in the setting of invexity, g-convexity and uniformly prox-regular convexity. The concepts of invexity, g-convexity and uniformly prox-regular convexity are generalizations of the classical convexity in different directions. Some classes of equilibrium problems are introduced and studied. We also suggest several open problems with sufficient information and references.
MSC:
49J40Variational methods including variational inequalities
90C30Nonlinear programming
35A15Variational methods (PDE)
47J25Iterative procedures (nonlinear operator equations)