zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multihypothesis sequential probability ratio tests. II: Accurate asymptotic expansions for the expected sample size. (English) Zbl 1059.62581

Summary: For Part I, see ibid. 45, 2448–2461 (1999; Zbl 1131.62313).

We proved in Part I that two specific constructions of multihypothesis sequential tests, which we refer to as multihypothesis sequential probability ratio tests (MSPRTs), are asymptotically optimal as the decision risks (or error probabilities) go to zero. The MSPRTs asymptotically minimize not only the expected sample size but also any positive moment of the stopping time distribution, under very general statistical models for the observations. In this paper, based on nonlinear renewal theory we find accurate asymptotic approximations (up to a vanishing term) for the expected sample size that take into account the “overshoot” over the boundaries of decision statistics. The approximations are derived for the scenario where the hypotheses are simple, the observations are independent and identically distributed (i.i.d.) according to one of the underlying distributions, and the decision risks go to zero. Simulation results for practical examples show that these approximations are fairly accurate not only for large but also for moderate sample sizes. The asymptotic results given here complete the analysis initiated by C. W. Baum and V. V. Veeravalli [see IEEE Trans. Inf. Theory 40, No. 6, 1994–2007 (1994; Zbl 0828.62070), where first-order asymptotics were obtained for the expected sample size under a specific restriction on the Kullback-Leibler distances between the hypotheses


MSC:
62L10Sequential statistical analysis