*(English)*Zbl 1059.65072

Summary: Numerical solution of hyperbolic partial differential equation with an integral condition continues to be a major research area with widespread applications in modern physics and technology. Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In place of the classical specification of boundary data, we impose a nonlocal boundary condition. Partial differential equations with nonlocal boundary specifications have received much attention in last 20 years. However, most of the articles were directed to the second-order parabolic equation, particularly to heat conduction equation.

We deal here with a new type of nonlocal boundary value problems that is the solution of hyperbolic partial differential equations with nonlocal boundary specifications. These nonlocal conditions arise mainly when the data on the boundary can not be measured directly. Several finite difference methods have been proposed for the numerical solution of this one-dimensional nonclassic boundary value problem. These computational techniques are compared using the largest error terms in the resulting modified equivalent partial differential equation. Numerical results supporting theoretical expectations are given. Restrictions on using higher order computational techniques for the studied problem are discussed. Suitable references on various physical applications and the theoretical aspects of solutions are introduced at the end of the article.

##### MSC:

65M06 | Finite difference methods (IVP of PDE) |

65M12 | Stability and convergence of numerical methods (IVP of PDE) |

35L05 | Wave equation (hyperbolic PDE) |