zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilization of linear systems with limited information. (English) Zbl 1059.93521
Summary: We show that the coarsest, or least dense, quantizer that quadratically stabilizes a single input linear discrete time invariant system is logarithmic, and can be computed by solving a special linear quadratic regulator problem. We provide a closed form for the optimal logarithmic base exclusively in terms of the unstable eigenvalues of the system. We show how to design quantized state-feedback controllers, and quantized state estimators. This leads to the design of hybrid output feedback controllers. The theory is then extended to sampling and quantization of continuous time linear systems sampled at constant time intervals. We generalize the definition of density of quantization to the density of sampling and quantization in a natural way, and search for the coarsest sampling and quantization scheme that ensures stability. Finally, by relaxing the definition of quadratic stability, we show how to construct logarithmic quantizers with only finite number of quantization levels and still achieve practical stability of the closed-loop system.
MSC:
93D15Stabilization of systems by feedback
93C05Linear control systems