zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stable particle methods based on Lagrangian kernels. (English) Zbl 1060.74672
Summary: A large deformation particle method based on the Krongauz-Belytschko corrected-gradient meshfree method with Lagrangian kernels is developed. In this form, the gradient is corrected by a linear transformation so that linear completeness is satisfied. For the test functions, Shepard functions are used; this guarantees that the patch test is met. Lagrangian kernels are introduced to eliminate spurious distortions of the domain of material stability. A mass allocation scheme is developed that captures correct reflection of waves without any explicit application of traction boundary conditions. In addition, the Lagrangian kernel versions of various forms of smooth particle methods (SPH), including the standard forms and the Randles-Libersky modification are presented and studied. Results are obtained for a variety of problems that compare this method to standard forms of SPH, the Randles-Libersky correction and large deformation versions of the element-free Galerkin method.
74S30Other numerical methods in solid mechanics