zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A niche hybrid genetic algorithm for global optimization of continuous multimodal functions. (English) Zbl 1062.65065

Summary: A niche hybrid genetic algorithm (NHGA) is proposed to solve continuous multimodal optimization problems more efficiently, accurately and reliably. It provides a new architecture of hybrid algorithms, which organically merges the niche techniques and Nelder-Mead’s simplex method into genetic algorithms (GAs). In the new architecture, the simplex search is first performed in the potential niches, which likely contain a global optimum, to locate the promising zones within search space, quickly and reliably. Then another simplex search is used to quickly discover the global optimum in the located promising zones.

The proposed method not only makes the exploration capabilities of GAs stronger through niche techniques, but also has more powerful exploitation capabilities by using simplex search. So it effectively alleviates premature convergence and improves weak exploitation capacities of GAs. A set of benchmark functions is used to demonstrate the validity of NHGA and the role of every component of NHGA. Numerical experiments show that the NHGA may, efficiently and reliably, obtain a more accurate global optimum for the complex and high-dimension multimodal optimization problems. It also demonstrates that the new hybrid architecture is potential and can be used to generate more potential hybrid algorithms.

MSC:
65K05Mathematical programming (numerical methods)
90C29Multi-objective programming; goal programming
90C30Nonlinear programming
Software:
Genocop