zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Rational Legendre approximation for solving some physical problems on semi-infinite intervals. (English) Zbl 1063.65146
Summary: A numerical technique for solving some physical problems on a semi-infinite interval is presented. Two nonlinear examples are proposed. In the first example the Volterra’s population model growth is formulated as a nonlinear differential equation, and in the second example the Lane-Emden nonlinear differential equation is considered. The approach is based on a rational Legendre tau method. The operational matrices of derivative and product of rational Legendre functions are presented. These matrices together with the tau method are utilized to reduce the solution of these physical problems to the solution of systems of algebraic equations. The method is easy to implement and yields very accurate results.
MSC:
65R20Integral equations (numerical methods)
45J05Integro-ordinary differential equations
45G10Nonsingular nonlinear integral equations
92D25Population dynamics (general)
65L10Boundary value problems for ODE (numerical methods)
34B05Linear boundary value problems for ODE
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE