zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Augmented formulations for solving Maxwell equations. (English) Zbl 1063.78018
Summary: We consider augmented variational formulations for solving the static or time-harmonic Maxwell equations. For that, a term is added to the usual H (curl) conforming formulations. It consists of a (weighted) L 2 scalar product between the divergence of the EM and the divergence of test fields. In this respect, the methods we present are H (curl, div) conforming. We also build mixed, augmented variational formulations, with either one or two Lagrange multipliers, to dualize the equation on the divergence and, when applicable, the relation on the tangential or normal trace of the field. It is proven that one can derive formulations, which are equivalent to the original static or time-harmonic Maxwell equations. In the latter case, spurious modes are automatically excluded. Numerical analysis and experiments will be presented in the forthcoming paper [the author and E. Jamelot, Augmented formulations for solving Maxwell equations: numerical analysis and experiments, in preparation].
MSC:
78M10Finite element methods (optics)
35Q60PDEs in connection with optics and electromagnetic theory
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)