zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive Markov chain Monte Carlo through regeneration. (English) Zbl 1064.65503
Summary: Markov chain Monte Carlo (MCMC) is used for evaluating expectations of functions of interest under a target distribution π. This is done by calculating averages over the sample path of a Markov chain having π as its stationary distribution. For computational efficiency, the Markov chain should be rapidly mixing. This sometimes can be achieved only by careful design of the transition kernel of the chain, on the basis of a detailed preliminary exploratory analysis of π. An alternative approach might be to allow the transition kernel to adapt whenever new features of π are encountered during the MCMC run. However, if such adaptation occurs infinitely often, then the stationary distribution of the chain may be disturbed. We describe a framework, based on the concept of Markov chain regeneration, which allows adaptation to occur infinitely often but does not disturb the stationary distribution of the chain or the consistency of sample path averages.
MSC:
65C40Computational Markov chains (numerical analysis)
62F15Bayesian inference