zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Characterizations and applications of prequasi-invex functions. (English) Zbl 1064.90038
Summary: In this paper, two new types of generalized convex functions are introduced. They are called strictly prequasi-invex functions and semistrictly prequasi-invex functions. Note that prequasi-invexity does not imply semistrict prequasi-invexity. The characterization of prequasi-invex functions is established under the condition of lower semicontinuity, upper semicontinuity, and semistrict prequasi-invexity, respectively. Furthermore, the characterization of semistrictly prequasi-invex functions is also obtained under the condition of prequasi-invexity and lower semicontinuity, respectively. A similar result is also obtained for strictly prequasi-invex functions. It is worth noting that these characterizations reveal various interesting relationships among prequasi-invex, semistrictly prequasi-invex, and strictly prequasi-invex functions. Finally, prequasi-invex, semistrictly prequasi-invex, and strictly prequasi-invex functions are used in the study of optimization problems.

MSC:
90C26Nonconvex programming, global optimization
90C29Multi-objective programming; goal programming