zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics. (English) Zbl 1065.68103
Summary: It is shown that, depending upon the orientation of the end tangents 𝐭 0 , 𝐭 1 relative to the end point displacement vector Δ𝐩=𝐩 1 -𝐩 0 , the problem of G 1 Hermite interpolation by PH cubic segments may admit zero, one, or two distinct solutions. For cases where two interpolants exist, the bending energy may be used to select among them. In cases where no solution exists, we determine the minimal adjustment of one end tangent that permits a spatial PH cubic Hermite interpolant. The problem of assigning tangents to a sequence of points 𝐩 0 ,...,𝐩 n in R 3 , compatible with a G 1 piecewise-PH-cubic spline interpolating those points, is also briefly addressed. The performance of these methods, in terms of overall smoothness and shape-preservation properties of the resulting curves, is illustrated by a selection of computed examples.
MSC:
68U05Computer graphics; computational geometry
References:
[1]G. Albrecht and R.T. Farouki, Construction of C2 Pythagorean hodograph interpolating splines by the homotopy method, Adv. Comput. Math. 5 (1996) 417-442. · Zbl 0866.65008 · doi:10.1007/BF02124754
[2]H.I. Choi and C.Y. Han, Euler?Rodrigues frames on spatial Pythagorean-hodograph curves, Comput. Aided Geom. Design 19 (2002) 603-620. · Zbl 1043.53005 · doi:10.1016/S0167-8396(02)00165-6
[3]H.I. Choi, D.S. Lee and H.P. Moon, Clifford algebra, spin representation and rational parameterization of curves and surfaces, Adv. Comput. Math. 17 (2002) 5-48. · Zbl 0998.65024 · doi:10.1023/A:1015294029079
[4]P. Costantini and F. Pelosi, Shape-preserving approximation by space curves, Numer. Algorithms 27 (2001) 237-264. · Zbl 1079.65018 · doi:10.1023/A:1011895529998
[5]R.T. Farouki, The elastic bending energy of Pythagorean-hodograph curves, Comput. Aided Geom. Design 13 (1996) 227-241. · Zbl 0875.68861 · doi:10.1016/0167-8396(95)00024-0
[6]R.T. Farouki, Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves, Graph. Models 64 (2002) 382-395. · doi:10.1016/S1524-0703(03)00002-X
[7]R.T. Farouki, M. al-Kandari and T. Sakkalis, Structural invariance of spatial Pythagorean hodographs, Comput. Aided Geom. Design 19 (2002) 395-407. · doi:10.1016/S0167-8396(02)00123-1
[8]R.T. Farouki, M. al-Kandari and T. Sakkalis, Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves, Adv. Comput. Math. 17 (2002) 369-383. · Zbl 1001.41003 · doi:10.1023/A:1016280811626
[9]R.T. Farouki and C.Y. Han, Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves, Comput. Aided Geom. Design 20 (2003) 435-454. · Zbl 1069.65551 · doi:10.1016/S0167-8396(03)00095-5
[10]R.T. Farouki, B.K. Kuspa, C. Manni and A. Sestini, Efficient solution of the complex quadratic tridiagonal system for C2 PH quintic splines, Numer. Algorithms 27 (2001) 35-60. · Zbl 0987.65016 · doi:10.1023/A:1016621116240
[11]R.T. Farouki, J. Manjunathaiah, D. Nicholas, G.-F. Yuan and S. Jee, Variable feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves, Comput. Aided Design 30 (1998) 631-640. · Zbl 1049.68723 · doi:10.1016/S0010-4485(98)00020-7
[12]R.T. Farouki, C. Manni and A. Sestini, Spatial C2 PH quintic splines, in: Curve and Surface Design: Saint Malo 2002, eds. T. Lyche, M.-L. Mazure and L.L. Schumaker (Nashboro Press, 2003) pp. 147-156.
[13]R.T. Farouki and C.A. Neff, Hermite interpolation by Pythagorean-hodograph quintics, Math. Comp. 64 (1995) 1589-1609. · doi:10.1090/S0025-5718-1995-1308452-6
[14]R.T. Farouki and T. Sakkalis, Pythagorean-hodograph space curves, Adv. Comput. Math. 2 (1994) 41-66. · Zbl 0829.65011 · doi:10.1007/BF02519035
[15]R.T. Farouki and S. Shah, Real-time CNC interpolators for Pythagorean-hodograph curves, Comput. Aided Geom. Design 13 (1996) 583-600. · Zbl 0875.68875 · doi:10.1016/0167-8396(95)00047-X
[16]T.N.T. Goodman and B.H. Ong, Shape preserving interpolation by space curves, Comput. Aided Geom. Design 15 (1997) 1-17. · Zbl 0891.68115 · doi:10.1016/S0167-8396(97)81781-5
[17]H. Guggenheimer, Computing frames along a trajectory, Comput. Aided Geom. Design 6 (1989) 77-78. · Zbl 0664.65017 · doi:10.1016/0167-8396(89)90008-3
[18]B. Jüttler, Hermite interpolation by Pythagorean hodograph curves of degree seven, Math. Comp. 70 (2001) 1089-1111. · Zbl 0963.68210 · doi:10.1090/S0025-5718-00-01288-6
[19]B. Jüttler and C. Mäurer, Cubic Pythagorean-hodograph spline curves and applications to sweep surface modeling, Comput. Aided Design 31 (1999) 73-83. · Zbl 1054.68748 · doi:10.1016/S0010-4485(98)00081-5
[20]F. Klok, Two moving coordinate frames for sweeping along a 3D trajectory, Comput. Aided Geom. Design 3 (1986) 217-229. · Zbl 0631.65145 · doi:10.1016/0167-8396(86)90039-7
[21]H.P. Moon, R.T. Farouki and H.I. Choi, Construction and shape analysis of PH quintic Hermite interpolants, Comput. Aided Geom. Design 18 (2001) 93-115. · Zbl 0971.68186 · doi:10.1016/S0167-8396(01)00016-4
[22]J. Roe, Elementary Geometry (Oxford Univ. Press, Oxford, 1993).
[23]V. Snyder and C.H. Sisam, Analytic Geometry of Space (Henry Holt, New York, 1914).
[24]D.M.Y. Sommerville, Analytical Geometry of Three Dimensions (Cambridge Univ. Press, Cambridge, 1951).
[25]Y.-F. Tsai, R.T. Farouki and B. Feldman, Performance analysis of CNC interpolators for time-dependent feedrates along PH curves, Comput. Aided Geom. Design 18 (2001) 245-265. · Zbl 0971.68172 · doi:10.1016/S0167-8396(01)00029-2
[26]J.V. Uspensky, Theory of Equations (McGraw-Hill, New York, 1948).
[27]M.G. Wagner and B. Ravani, Curves with rational Frenet?Serret motion, Comput. Aided Geom. Design 15, 79-101.
[28]W. Wang and B. Joe, Robust computation of the rotation minimizing frame for sweep surface modelling, Comput. Aided Design 29 (1997) 379-391. · Zbl 05472507 · doi:10.1016/S0010-4485(96)00077-2