zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving non-additive traffic assignment problems: a descent method for co-coercive variational inequalities. (English) Zbl 1065.90015
Summary: This paper developed a descent direction of the merit function for co-coercive variational inequality (VI) problems. The descent approach is closely related to Fukushima’s method for strongly monotone VI problems and He’s method for linear VI problems, and can be viewed as an extension for the more general case of co-coercive VI problems. This extension is important for route-based traffic assignment problems as the associated VI is often neither strongly monotone nor linear. This study then implemented the solution method for traffic assignment problems with non-additive route costs. Similar to projection-based methods, the computational effort required per iteration of this solution approach is modest. This is especially so for traffic equilibrium problems with elastic demand, where the solution method consists of a function evaluation and a simple projection onto the non-negative orthant.
MSC:
90B20Traffic problems
90B80Discrete location and assignment
58E35Variational inequalities (global problems)