zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hopf bifurcation in two SIRS density dependent epidemic models. (English) Zbl 1065.92042

Summary: This paper uses two SIRS type epidemiological models to examine the impact on the spread of disease caused by vaccination when the immunity gained from such an intervention is not life long. This occurs, for example, in vaccination against influenza. We assume that susceptible individuals become immune immediately after vaccination and that immune individuals become susceptible to infection after a sufficient lapse of time.

In our first model, we consider a constant contact rate between infectious and susceptible individuals, whereas in our second model this depends on the current size of the population. The death rate in both models depends on population density. We examine the different types of dynamic and long term behaviour possible in our models and in particular examine the existence and stability of equilibrium solutions. We find that Hopf bifurcation is theoretically possible but appears not to occur for realistic parameter values. Numerical simulations confirm the analytical results. The paper concludes with a brief discussion.

34K18Bifurcation theory of functional differential equations
34K20Stability theory of functional-differential equations
65C20Models (numerical methods)