zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Reformulation descent applied to circle packing problems. (English) Zbl 1066.90092

Summary: Several years ago classical Euclidean geometry problems of densest packing of circles in the plane have been formulated as nonconvex optimization problems, allowing to find heuristic solutions by using any available NLP solver. In this paper we try to improve this procedure. The faster NLP solvers use first order information only, so stop in a stationary point. A simple switch from Cartesian coordinates to polar or vice versa, may destroy this stationarity and allow the solver to descend further. Such formulation switches may of course be iterated. For densest packing of equal circles into a unit circle, this simple feature turns out to yield results close to the best known, while beating second order methods by a time-factor well over 100.

This technique is formalized as a general reformulation descent (RD) heuristic, which iterates among several formulations of the same problem until local searches obtain no further improvement. We also briefly discuss how RD might be used within other metaheuristic schemes.

MSC:
90C26Nonconvex programming, global optimization
90C59Approximation methods and heuristics