zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Particle filtering for partially observed Gaussian state space models. (English) Zbl 1067.62098

Summary: Solving Bayesian estimation problems where the posterior distribution evolves over time through the accumulation of data has many applications for dynamic models. A large number of algorithms based on particle filtering methods, also known as sequential Monte Carlo algorithms, have recently been proposed to solve these problems.

We propose a special particle filtering method which uses random mixtures of normal distributions to represent the posterior distributions of partially observed Gaussian state space models. This algorithm is based on a marginalization idea for improving efficiency and can lead to substantial gains over standard algorithms. It differs from previous algorithms which were only applicable to conditionally linear Gaussian state space models. Computer simulations are carried out to evaluate the performance of the proposed algorithm for dynamic tobit and probit models.

62M20Prediction; filtering (statistics)
62F15Bayesian inference
62L10Sequential statistical analysis