zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Time fractional advection-dispersion equation. (English) Zbl 1068.26006
Applying first a simplifying substitution of the dependent variable (which in the end must be inverted) and then using the transforms of Laplace and Mellin the authors construct in terms of H-functions a representation of the fundamental solution to the linear time-fractional diffusion-convection equation (called by them “advection dispersion-equation”) with constant coefficients. In this way they generalize the solution known for the special case of pure diffusion (dispersion) without convection (advection). By “time-fractional” they mean, as has become common language, replacement of the first time derivative by a fractional time derivative of order α(0,1]. Actually, they use the fractional derivative suitably regularized at zero, usually now called the “Caputo fractional derivative” which is appropriate in handling Cauchy problems.
MSC:
26A33Fractional derivatives and integrals (real functions)
33D15Basic hypergeometric functions of one variable, r φ s
44A10Laplace transform
44A15Special transforms (Legendre, Hilbert, etc.)
45K05Integro-partial differential equations
35K57Reaction-diffusion equations
References:
[1]J.M. Augulo, M.D. Ruiz-Medina, V.V. And and W. Grecksch,Fractional diffusion and fractional heat equation, Adv. Appl. Prob.32, (2000), 1077–1099. · Zbl 0986.60077 · doi:10.1239/aap/1013540349
[2]V.V. Anh and N.N. Leonenko,Scaling laws for fractional diffusion-wave equations with singular data, Statistics and Probability Letters,48, (2000), 239–252. · Zbl 0970.35174 · doi:10.1016/S0167-7152(00)00003-1
[3]V.V. Anh and N.N. Leonenko,Spectral analysis of fractional kinetic equations with random data, J. Statist. Phys.,104, (2001), 1349–1387. · Zbl 1034.82044 · doi:10.1023/A:1010474332598
[4]M. Basu and D.P. Acharya,On quadratic fractional generalized solid bi-criterion, J. Appl. Math. and Computing10(2002), 131–144. · Zbl 1007.90038 · doi:10.1007/BF02936212
[5]D.A. Benson., S. W. Wheatcraft and M. M. Meerschaert,Application of a fractional advection-despersion equation, Water Resour. Res.36(6), (2000a), 1403–1412. · doi:10.1029/2000WR900031
[6]D.A. Benson, S. W. Wheatcraft and M. M. Meerschaert,The fractional-order governing equation of Levy motion, Water Resour. Res.,36(6), (2000b), 1413–1423. · doi:10.1029/2000WR900032
[7]P. Biler, T. Funaki, W.A. Woyczynski, Fractal Burgers equation, I,Differential Equations,147, (1998), 1–38. · Zbl 0921.35074 · doi:10.1006/jdeq.1998.3435
[8]M. Caputo,The Green function of the diffusion of fluids in porous media with memory, Rend. Fis. Acc. Lincei (ser. 9),7, (1996), 243–250. · Zbl 0879.76098 · doi:10.1007/BF03002242
[9]A.M.A. El-Sayed and M.A.E. Aly,Continuation theorem of fractionalorder evolutionary integral equations, Korean.J. Comput. Appl. Math.9(2002), 525–534.
[10]A. Erdelyi,Tables of Integral Transforms, Vol. I, McGraw-Hill, New York, 1954.
[11]R. Giona and H.E. Roman,A theory of transport phenomena in disordered systems, Chem. Eng. J. bf49, (1992), 1–10. · doi:10.1016/0300-9467(92)85018-5
[12]R. Gorenflo, Yu. Luchko and F. Mainardi,Analytical properties and applications of the Wright function, Fractional Calculus Appl. Anal.2, (1999), 383–414.
[13]R. Gorenflo, Yu. Luchko and F. Mainardi,Wright function as scale-invariant solutions of the diffusion-wave equation, J. Comp. Appl. Math.118, (2000), 175–191. · Zbl 0973.35012 · doi:10.1016/S0377-0427(00)00288-0
[14]R. Hilfer,Exact solutions for a class of fractal time random walks, Fractals,3, (1995), 211–216. · Zbl 0881.60066 · doi:10.1142/S0218348X95000163
[15]F. Liu, V. Anh and I. Turner,Numerical solution of the fractional-order advection-dispersion equation, Proceedings of the International Conference on Boundary and Interior Layers, Perth, Australia, (2002), 159–164.
[16]F. Mainardi,On the initial value problem for the fractional diffusion-wave equation, in: S. Rionero, T. Ruggeri (Eds.), Waves and Stability in Continuous Media, World Scientific, Singapore, (1994), 246–251.
[17]F. Mainardi,Fractional diffusive waves in viscoelastic solids in: J.L. Wagner and F.R. Norwood (Eds.), IUTAM Symposium–Nonlinear Waves in Solids, ASME/AMR, Fairfield NJ, (1995), 93–97.
[18]F. Mainardi, Yu. Luchko and G. Pagnini,The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus Appl. Anal.,4, (2001).
[19]K.S. Miller and B. Ross,An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993.
[20]K.B. Oldham and J. Spanier,The Fractional Calculus, Academic Press, 1974.
[21]I. Podlubny,Fractional Differential Equations, Academic Press, 1999.
[22]A. Saichev and G. Zaslavsky,Fractional kinetic equations: solutions and applications, Chaos,7, (1997), 753–764. · Zbl 0933.37029 · doi:10.1063/1.166272
[23]S.G. Samko, A. A. Kilbas, and O. I. Marichev,Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Newark, N J, 1993.
[24]W.R. Schneider and W. Wyss,Fractional diffusion and wave equations, J. Math. Phys.30, (1989), 134–144. · Zbl 0692.45004 · doi:10.1063/1.528578
[25]W. Wyss,The fractional diffusion equation, J. Math. Phys.,27, (1986), 2782–2785. · Zbl 0632.35031 · doi:10.1063/1.527251
[26]W. Wyss,The fractional Black-Scholes equation, Fractional Calculus Appl. Anal.3, (2000), 51–61.