zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach. (English) Zbl 1068.93046
Summary: Computed Torque Control (CTC) is an effective motion control strategy for robotic manipulator systems, which can ensure globally asymptotic stability. However, the CTC scheme requires precise dynamical models of robotic manipulators. To handle this impossibility, in this paper, a new approach combing CTC and Fuzzy Control (FC) is developed for trajectory tracking problems of robotic manipulators with structured uncertainty and/or unstructured uncertainty. The fuzzy part with a set of tunable parameters is employed to approximate lumped uncertainty due to parameter variations, unmodeled dynamics and so on in robotic manipulators. Based on the Lyapunov stability theorem, it is shown that the proposed controller can guarantee stability of closed-loop systems and satisfactory tracking performances. The proposed approach indicates that the CTC method is also valid for controlling uncertain robotic manipulators as long as the compensative controller is appropriately designed. Finally, computer simulation results on a two-link elbow planar robotic manipulator are presented to show tracking capability and effectiveness of the proposed scheme.
MSC:
93C85Automated control systems (robots, etc.)
93C42Fuzzy control systems