zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A locally conservative LDG method for the incompressible Navier-Stokes equations. (English) Zbl 1069.76029
Summary: A new local discontinuous Galerkin (LDG) method for incompressible stationary Navier-Stokes equations is proposed and analyzed. Four important features render this method unique: its stability, its local conservativity, its high-order accuracy, and the exact satisfaction of the incompressibility constraint. Although the method uses completely discontinuous approximations, a globally divergence-free approximate velocity in H(div;Ω) is obtained by simple, element-by-element post-processing. Optimal error estimates are proven, and an iterative procedure used to compute the approximate solution is shown to converge. This procedure is nothing but a discrete version of classical fixed point iteration used to obtain existence and uniqueness of solutions to incompressible Navier-Stokes equations by solving a sequence of Oseen problems. Numerical results are shown which verify the theoretical rates of convergence. They also confirm the independence of the number of fixed point iterations with respect to the discretization parameters. Finally, they show that the method works well for a wide range of Reynolds numbers.

MSC:
76M10Finite element methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
65N15Error bounds (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
Software:
deal.ii