zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilized finite element method for the stationary Navier-Stokes equations. (English) Zbl 1069.76031
Summary: We investigate a stabilized finite element method for two-dimensional stationary incompressible Navier-Stokes equations. A macroelement condition is introduced for constructing the local stabilized formulation of the stationary Navier-Stokes equations. By satisfying this condition, the stability of Q 1 -P 0 quadrilateral element and P 1 -P 0 triangular element are established. Moreover, the well-posedness and optimal error estimates of the stabilized finite element method for stationary Navier-Stokes equations are obtained. Finally, some numerical tests confirm the theoretical results of the stabilized finite element method.
76M10Finite element methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N35Spectral, collocation and related methods (BVP of PDE)
[2] · Zbl 0521.76027 · doi:10.1137/0720048
[4] · doi:10.1090/S0025-5718-1992-1106973-X
[5] · Zbl 0706.76075 · doi:10.1016/0045-7825(90)90095-4
[6] · Zbl 0956.65100 · doi:10.1137/S1064827598333715
[7] · Zbl 0940.76036 · doi:10.1016/S0045-7825(98)00087-5
[8] · Zbl 0810.76044 · doi:10.1137/0731070
[11] · Zbl 0487.76035 · doi:10.1137/0719018
[12] · Zbl 0317.35037 · doi:10.1016/0022-1236(76)90035-5
[13] · Zbl 0811.76035 · doi:10.1007/s002110050056
[16]Sani R.L., Gresho P.M., Lee R.L. and D.F. Griffiths, The cause and cure(?) of the spuious pressures generated by certain finite element method solutions of the incompressible Navier-Stokes equations. Parts 1 and 2. Int. J. Numer. Methods Fluids 1 (1981) 17–43; 171–206.
[18] · Zbl 0913.76050 · doi:10.1137/S003614299630230X
[20] · Zbl 0412.76023 · doi:10.1016/0021-9991(79)90086-X