zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Simultaneous estimation of the origin-destination matrices and travel-cost coefficient for congested networks in a stochastic user equilibrium. (English) Zbl 1069.90509
Summary: This article proposes an optimization model for simultaneous estimation of an origin-destination matrix and a travel-cost coefficient for congested networks in a logitbased stochastic user equilibrium (SUE). The model is formulated in the form of a standard differentiable, nonlinear optimization problem with analytical stochastic user equilibrium constraints. Explicit expressions of the derivatives of the stochastic user equilibrium constraints with respect to origin-destination demand, link flow, and travel-cost coefficient are derived and computed efficiently through a stochastic network-loading approach. A successive quadratic-programming algorithm using the derivative information is applied to solve the simultaneous estimation model. This algorithm converges to a Karusch-Kuhn-Tucker point of the problem under certain conditions. The proposed model and algorithm are illustrated with a numerical example.
MSC:
90B10Network models, deterministic (optimization)
90B20Traffic problems