zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fast deterministic pricing of options on Lévy driven assets. (English) Zbl 1072.60052
Summary: Arbitrage-free prices u of European contracts on risky assets whose log-returns are modelled by Lévy processes satisfy a parabolic partial integro-differential equation (PIDE) t u+𝒜[u]=0. This PIDE is localized to bounded domains and the error due to this localization is estimated. The localized PIDE is discretized by the θ-scheme in time and a wavelet Galerkin method with N degrees of freedom in log-price space. The dense matrix for 𝒜 can be replaced by a sparse matrix in the wavelet basis, and the linear systems in each implicit time step are solved approximatively with GMRES in linear complexity. The total work of the algorithm for M time steps is bounded by O(MN(log(N)) 2 ) operations and O(Nlog(N)) memory. The deterministic algorithm gives optimal convergence rates (up to logarithmic terms) for the computed solution in the same complexity as finite difference approximations of the standard Black-Scholes equation. Computational examples for various Lévy price processes are presented.
60H30Applications of stochastic analysis
60G51Processes with independent increments; Lévy processes
60H15Stochastic partial differential equations
60J75Jump processes
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
65T60Wavelets (numerical methods)
91B28Finance etc. (MSC2000)