zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Eigenvalue problems for Sturm-Liouville equations with transmission conditions. (English) Zbl 1073.34096
For the Sturm-Liouville eigenvalue problem -u '' +q(x)u=λu for x(-1,1),x0 subject to the eigenparameter-dependent boundary conditions u(-1)=0,(λ-a)u ' (1)+λbu(1)=0 and the transmission conditions at x=0: u(-0)=h 1 u(+0),u ' (-0)=h 2 u ' (+0), where ab>0,h 1 h 2 >0, it was established by the authors [Appl. Math. Comput. 157, 347–355 (2004; Zbl 1060.34007)], that all eigenvalues are real and the eigenfunctions corresponding to different eigenvalues are orthogonal in a Hilbert space. In this article, the asymptotic behavior of the eigenvalues and the corresponding eigenfunctions are given through a realization of the basic solutions which are solutions of the problem on [-1,0)(0,1] except that only one boundary condition is satisfied. A counterexample is given to show that ab>0 and h 1 h 2 >0 are necessary.
34L20Asymptotic distribution of eigenvalues for OD operators
34B24Sturm-Liouville theory
[1]P. A. Binding, P. J. Browne and B. A. Watson,Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter II, Journal of Computational and Applied Mathematics148 (2002), 147–169. · Zbl 1019.34028 · doi:10.1016/S0377-0427(02)00579-4
[2]C. T. Fulton,Two-point boundary value problems with eigenvalue parameter contained in the boundary condition, Proceedings of the Royal Society of Edinburgh, Section A77A (1977), 293–308.
[3]N. Yu. Kapustin and E. I. MoiseevOn spectral problem in the theory of parabolohyperbolic heat-transfer equation, Doklady Akademii Nauk SSSR352, no. 4 (1997), 451–454 (in Russian).
[4]A. V. Likov and Yu. A. Mikhailov,The Theory of Heat and Mass Transfer, Qosenergaizdai, 1963 (in Russian).
[5]O. Sh. Mukhtarov and H. Demir,Coerciveness of the discontinuous initial-boundary value problem for parabolic equations, Israel Journal of Mathematics114 (1999), 239–252. · Zbl 0943.35037 · doi:10.1007/BF02785580
[6]O. Sh. Mukhtarov, M. Kandemir and N. Kuruoĝlu,Distribution of eigenvalues for the discontinuous boundary-value problem with functional-manypoint conditions, Israel Journal of Mathematics129 (2002), 143–156. · Zbl 1023.34079 · doi:10.1007/BF02773160
[7]O. Sh. Mukhtarov and S. Yakubov,Problems for ordinary differential equations with transmission conditions, Applicable Analysis81 (2002), 1033–1064. · Zbl 1062.34094 · doi:10.1080/0003681021000029853
[8]N. Yu. Shashkov,Systematical-structural Analysis of Heat Transfer Processes and its Applications, Mir, Moscow, 1983 (in Russian).
[9]A. N. Tikhonov and A. A. Samarskii,Equations of Mathematical Physics, Pergamon, Oxford and New York, 1963.
[10]E. C. Titchmarsh,Eigenfunction Expansions Associated with Second Order Differential Equations I (2nd edn.) Oxford University Press, London, 1962.
[11]I. Titeux and Ya. Yakubov,Completeness of root functions for thermal conduction in a strip with piecewise continuous coefficients, Mathematical Models & Methods in Applied Sciences7(7) (1997), 1035–1050. · Zbl 0903.73008 · doi:10.1142/S0218202597000529
[12]E. Tunç and O. Sh. Mukhtarov,Fundamental solutions and eigenvalues of one boundary-value problem with transmission conditions, Applied Mathematics and Computation (Online; doi:10.1016/j.amc.2003.08.039).
[13]N. N. Voitovich, B. Z. Katsenelbaum and A. N. Sivov,Generalized Method of Eigen-vibration in the Theory of Diffraction, Nauka, Moscow, 1997, (in Russian).
[14]S. Yakubov and Y. Yakubov,Abel basis of root functions of regular boundary value problems, Mathematicsche Nachrichten197 (1999), 157–187. · Zbl 0922.34069 · doi:10.1002/mana.19991970110