zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Marginal longitudinal nonparametric regression: Locality and efficiency of spline and kernel methods. (English) Zbl 1073.62529
Summary: We consider nonparametric regression in a longitudinal marginal model of generalized estimating equation (GEE) type with a time-varying covariate in the situation where the number of observations per subject is finite and the number of subjects is large. In such models, the basic shape of the regression function is affected only by the covariate values and not otherwise by the ordering of the observations. Two methods of estimating the nonparametric function can be considered: kernel methods and spline methods. Recently, surprising evidence has emerged suggesting that for kernel methods previously proposed in the literature, it is generally asymptotically preferable to ignore the correlation structure in our marginal model and instead assume that the data are independent, that is, working independence in the GEE jargon. As seen through equivalent kernel results, in univariate independent data problems splines and kernels have similar behavior; smoothing splines are equivalent to kernel regression with a specific higher-order kernel, and hence smoothing splines are local. This equivalence suggests that in our marginal model, working independence might be preferable for spline methods. Our results suggest the opposite; via theoretical and numerical calculations, we provide evidence suggesting that for our marginal model, marginal smoothing and penalized regression splines are not local in their behavior. In contrast to the kernel results, our evidence suggests that when using spline methods, it is worthwhile to account for the correlation structure. Our results also suggest that spline methods appear to be more efficient than the previously proposed kernel methods for our marginal model.

62G08Nonparametric regression
62J12Generalized linear models