zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Globally exponential stability of generalized Cohen-Grossberg neural networks with delays. (English) Zbl 1073.82597
Summary: Based on the Halanay inequality lemma, this Letter derives a new sufficient condition for the globally exponential stability of the generalized Cohen-Grossberg neural networks with delays (GDCGNNs). The GDCGNN is quite general, and can describe several well-known neural networks with and without delays, including Hopfield and cellular neural networks. It is shown that the proposed sufficient condition relies on the connection matrices and the network parameters, and that it is independent of the delay parameter. Furthermore, the presented condition is easy to check, and is less restrictive than some of the sufficient conditions proposed in previous studies. The benefits of the developed sufficient condition are demonstrated by comparing its performance in a series of examples with that of several conditions presented previously.
MSC:
82C32Neural nets (statistical mechanics)