zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodicity in an epidemic model with a generalized non-linear incidence. (English) Zbl 1073.92040

Summary: We develop and analyze a simple susceptible, infected, vaccinated (SIV) epidemic model including susceptible, infected and perfectly vaccinated classes, with a generalized nonlinear incidence rate subject only to a few general conditions. These conditions are satisfied by many models appearing in the literature. The detailed dynamics analysis of the model, using the Poincaré index theory, shows that non-linearity of the incidence rate leads to vital dynamics, such as bistability and periodicity, without seasonal forcing or being cyclic. Furthermore, it is shown that the basic reproductive number is independent of the functional form of the non-linear incidence rate.

Under certain, well-defined conditions, the model undergoes a Hopf bifurcation. Using the normal form of the model, the first Lyapunov coefficient is computed to determine the various types of Hopf bifurcation the model undergoes. These general results are applied to two examples: unbounded and saturated contact rates; in both cases, forward or backward Hopf bifurcations occur for two distinct values of the contact parameter. It is also shown that the model may undergo a subcritical Hopf bifurcation leading to the appearance of two concentric limit cycles. The results are illustrated by numerical simulations with realistic model parameters estimated for some infectious diseases of childhood.

34C23Bifurcation (ODE)
34D05Asymptotic stability of ODE
34C60Qualitative investigation and simulation of models (ODE)
37N25Dynamical systems in biology
65C20Models (numerical methods)