zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Detection and continuation of a border collision bifurcation in a forest fire model. (English) Zbl 1073.92052
Summary: The behavior of the simplest forest fire model is studied in this paper through bifurcation analysis. The model is a second-order continuous-time impact model where vegetational growth is described as a continuous and slow dynamic process, while fires are modeled as instantaneous and disruptive events. The transition from Mediterranean forests (characterized by wild chaotic fire regimes) to savannas and boreal forests (where fires are almost periodic) is recognized to be a catastrophic transition known as border collision bifurcation in the context of discrete-time systems. In the present case such a bifurcation can be easily detected numerically and then continued by solving a standard boundary-value problem. The result of the analysis complement previous simulation studies and are consistent with biological intuition.
37N25Dynamical systems in biology
34C23Bifurcation (ODE)