zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computation of complex Airy functions and their zeros using asymptotics and the differential equation. (English) Zbl 1074.33017
Summary: We describe a method by which one can compute the solutions of Airy’s differential equation, and their derivatives, both on the real line and in the complex plane. The computational methods are numerical integration of the differential equation and summation of asymptotic expansions for large argument. We give details involved in obtaining all of the parameter values, and we control the truncation errors rigorously. Using the same computational methods, we describe an algorithm that computes the zeros and associated values of the Airy functions and their derivatives, and the modulus and phase functions on the negative real axis.
MSC:
33F05Numerical approximation and evaluation of special functions
65D20Computation of special functions, construction of tables
Software:
AIZ; BIZ; Algorithm 838