zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. (English) Zbl 1074.65146
Summary: We numerically investigate the chaotic behaviors of the fractional-order Arneodo’s system [cf. A. Arneodo, P. H. Coullet, E. A. Spiegel and C. Tresser [Physica D 14, 327–347 (1985; Zbl 0595.58030)]. We find that chaos exists in the fractional-order Arneodo’s system with order less than 3. The lowest order we find to have chaos is 2.1 in this fractional-order Arneodo’s system. Our results are validated by the existence of a positive Lyapunov exponent. The linear and nonlinear drive-response synchronization methods are also presented for synchronizing the fractional-order chaotic Arneodo’s systems only using a scalar drive signal. The two approaches, based on stability theory of fractional-order systems, are simple and theoretically rigorous. They do not require the computation of the conditional Lyapunov exponents. Simulation results are used to visualize and illustrate the effectiveness of the proposed synchronization methods.
65P20Numerical chaos
37D45Strange attractors, chaotic dynamics
37M25Computational methods for ergodic theory