zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. (English) Zbl 1074.93030
Summary: Nonnegative dynamical system models are derived from mass and energy balance considerations that involve dynamic states whose values are nonnegative. These models are widespread in biological, physiological, and ecological sciences and play a key role in the understanding of these processes. In this paper we develop several results on stability, dissipativity, and stability of feedback interconnections of linear and nonlinear nonnegative dynamical systems. Specifically, using linear Lyapunov functions we develop necessary and sufficient conditions for Lyapunov stability, semistability, that is, system trajectory convergence to Lyapunov stable equilibrium points, and asymptotic stability for nonnegative dynamical systems. In addition, using linear and nonlinear storage functions with linear supply rates we develop new notions of dissipativity theory for nonnegative dynamical systems. Finally, these results are used to develop general stability criteria for feedback interconnections of nonnegative dynamical systems.
93D05Lyapunov and other classical stabilities of control systems
92B05General biology and biomathematics
93C10Nonlinear control systems
34A30Linear ODE and systems, general
34D20Stability of ODE