zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Time compact high order difference methods for wave propagation. (English) Zbl 1075.65112
Summary: We construct one-step explicit difference methods for solution of wave propagation problems with fourth order accuracy in both space and time by using a principle that can be generalized to arbitrary order. We use the first order system form and a staggered grid. The fourth order accuracy in time is obtained by transferring time derivatives in the truncation error to space derivatives. Discontinuous coefficients corresponding to interfaces between different materials are considered as a special case of variable coefficients, and the method is applied across the discontinuities. The accuracy is much improved compared to second order methods even for this type of problem. A certain norm is shown to be conserved, ensuring good accuracy even for long time integration.

MSC:
65M06Finite difference methods (IVP of PDE)
65L05Initial value problems for ODE (numerical methods)