zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-objective fuzzy inventory model with three constraints: a geometric programming approach. (English) Zbl 1075.90005
Summary: A multi-item multi-objective inventory model with shortages and demand dependent unit cost has been formulated along with storage space, number of orders and production cost restrictions. In most of the real world situations, the cost parameters, the objective functions and constraints of the decision makers are imprecise in nature. Hence the cost parameters, the objective functions and constraints are imposed here in fuzzy environment. This model has been solved by geometric programming method. The results for the model without shortages are obtained as a particular case. The sensitivity analysis has been discussed for the change of the cost parameters. The models are illustrated with numerical examples.
MSC:
90B05Inventory, storage, reservoirs
90C70Fuzzy programming
90B50Management decision making, including multiple objectives