zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear discrete Sturm-Liouville problems. (English) Zbl 1076.39016

The paper is devoted to discrete boundary value problems of the form

Δpt-1Δyt-1+qtyt+λyt=fyt,

t=a+1,,b+1, subject to the boundary conditions

a 11 ya+a 12 Δya=0,a 21 yb+1+a 22 Δyb+1=0·

For bounded and continuous functions f:, the existence and the behavior of the real valued solutions is studied using the Brower Fixed Point Theorem. Here λ is an eigenvalue of the linear problem (f=0), so one supposes there exists a nontrivial solution of the associated linear boundary value problem.

If one multiplies f by a “small” parameter ε, one gives conditions which ensure the solvability of the problem. The Implicit Function Theorem is used to obtain criteria for the existence and for the qualitative behavior of the solutions.

MSC:
39A12Discrete version of topics in analysis
34L15Eigenvalues, estimation of eigenvalues, upper and lower bounds for OD operators