zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Clustering of time series data – a survey. (English) Zbl 1077.68803
Summary: Time series clustering has been shown effective in providing useful information in various domains. There seems to be an increased interest in time series clustering as part of the effort in temporal data mining research. To provide an overview, this paper surveys and summarizes previous works that investigated the clustering of time series data in various application domains. The basics of time series clustering are presented, including general-purpose clustering algorithms commonly used in time series clustering studies, the criteria for evaluating the performance of the clustering results, and the measures to determine the similarity/dissimilarity between two time series being compared, either in the forms of raw data, extracted features, or some model parameters. The past researchs are organized into three groups depending upon whether they work directly with the raw data either in the time or frequency domain, indirectly with features extracted from the raw data, or indirectly with models built from the raw data. The uniqueness and limitation of previous research are discussed and several possible topics for future research are identified. Moreover, the areas that time series clustering have been applied to are also summarized, including the sources of data used. It is hoped that this review will serve as the steppingstone for those interested in advancing this area of research.
68T10Pattern recognition, speech recognition
68T05Learning and adaptive systems