zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bicriteria train scheduling for high-speed passenger railroad planning applications. (English) Zbl 1077.90033
Summary: This paper is concerned with a double-track train scheduling problem for planning applications with multiple objectives. Focusing on a high-speed passenger rail line in an existing network, the problem is to minimize both (1) the expected waiting times for high-speed trains and (2) the total travel times of high-speed and medium-speed trains. By applying two practical priority rules, the problem with the second criterion is decomposed and formulated as a series of multi-mode resource constrained project scheduling problems in order to explicitly model acceleration and deceleration times. A branch-and-bound algorithm with effective dominance rules is developed to generate Pareto solutions for the bicriteria scheduling problem, and a beam search algorithm with utility evaluation rules is used to construct a representative set of non-dominated solutions. A case study based on Beijing-Shanghai high-speed railroad in China illustrates the methodology and compares the performance of the proposed algorithms.
90B35Scheduling theory, deterministic
90C29Multi-objective programming; goal programming
90B06Transportation, logistics