zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of global strong solution to the micropolar fluid system in a bounded domain. (English) Zbl 1078.35096
Summary: We are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, L p -L q type estimates are obtained. By use of the L p -L q estimates for the semigroup, we prove the existence theorem of global in time solution to the original nonlinear problem for small initial data. Furthermore, we study the magneto-micropolar fluid system in the final section.
35Q35PDEs in connection with fluid mechanics
76D03Existence, uniqueness, and regularity theory
76A05Non-Newtonian fluids
76W05Magnetohydrodynamics and electrohydrodynamics