zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Fibonacci length of certain centro-polyhedral groups. (English) Zbl 1079.20047
Summary: We examine the Fibonacci length of certain centro-polyhedral groups and show that in some cases the lengths depend on trobonacci sequences. Further we obtain specific examples of infinite families of three-generator groups with constant, linear and (3-step) Wall number dependent Fibonacci length.
20F05Generators, relations, and presentations of groups
11B39Fibonacci and Lucas numbers, etc.
20D60Arithmetic and combinatorial problems on finite groups
[1]C. M. Campbell and P. P. Campbell,The Fibonacci length of , , n 2,2,nand related groups, CIRCA Technical Report, University of St Andrews2004/8 (2004).
[2]C. M. Campbell, P. P. Campbell, H. Doostie and E.F. Robertson,On the Fibonacci length of powers of dihedral groups, in: Applications of Fibonacci numbers, Vol. 9, ed. F. T. Howard, Kluwer, Dordrecht (2004), 69–85.
[3]J. H. Conway, H. S. M. Coxeter and G. C. Shephard,The centre of a finitely generated group, Tensor (N.S.)25 (1972), 405–418; erratum, ibid Tensor (N.S.)26 (1972), 477.
[4]H. S. M. Coxeter and W. O. J. Moser,Generators and relations for discrete groups, 3rd edition, Springer, Berlin, 1972.
[5]E. C. Dade, D. W. Robinson, O. Taussky and M. Ward,Divisors of recurrent sequences, J. Reine Angew. Math.214/215 (1964), 180–183.
[6]H. Doostie and C. M. Campbell,Fibonacci length of automorphism groups involving Tribonacci numbers, Vietnam J. Math.28 (2000), 57–65.
[7]H. Doostie and R. Golamie,Computing on the Fibonacci lengths of finite groups, Int. J. Appl. Math.4 (2000), 149–156.
[8]The GAP Group,GAP– Groups, Algorithms and Programming, Version 4.3 Aachen, St Andrews, 2002. (http://www.gap-system.org)
[9]Maple, (http://www.maplesoft.com)
[10]D. W. Robinson,A note on linear recurrent sequences modulo m Amer. Math. Monthly73 (1966), 619–621. · Zbl 0136.32403 · doi:10.2307/2314796
[11]C. C. Sims,Computation with finitely presented groups, Encyclopedia of mathematics and its applications48, Cambridge University Press, Cambridge, 1994.
[12]E. G. Straus,Functions periodic modulo each of a sequence of integers, Duke Math. J.19 (1952), 379–395. · Zbl 0049.30902 · doi:10.1215/S0012-7094-52-01938-8
[13]D. D. Wall,Fibonacci series modulo m, Amer. Math. Monthly67 (1960), 525–532. · Zbl 0101.03201 · doi:10.2307/2309169
[14]H. J. Wilcox,Fibonacci sequences of period n in groups, Fibonacci Quart.24 (1986), 356–361.