zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A heuristic for minimizing the expected makespan in two-machine flow shops with consistent coefficients of variation. (English) Zbl 1079.90070

Summary: The paper deals with the classical problem of minimizing the makespan in a two-machine flow shop. When the job processing times are deterministic, the optimal job sequence can be determined by applying Johnson’s rule. When they are independent and exponential random variables, Talwar’s rule yields a job sequence that minimizes the makespan stochastically.

Assuming that the job processing times are independently and Weibull distributed random variables, we present a new job sequencing rule that includes both Johnson’s and Talwar’s rules as special cases. The proposed rule is applicable as a heuristic whenever the job processing times are characterized by their means and the same coefficient of variation. Simulation results show that it leads to very encouraging results when the expected makespan is minimized.

90B36Scheduling theory, stochastic
90C59Approximation methods and heuristics