zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Principles of scatter search. (English) Zbl 1079.90178

Summary: Scatter search is an evolutionary method that has been successfully applied to hard optimization problems. The fundamental concepts and principles of the method were first proposed in the 1970s, based on formulations dating back to the 1960s for combining decision rules and problem constraints. In contrast to other evolutionary methods like genetic algorithms, scatter search is founded on the premise that systematic designs and methods for creating new solutions afford significant benefits beyond those derived from recourse to randomization. It uses strategies for search diversification and intensification that have proved effective in a variety of optimization problems.

This paper provides the main principles and ideas of scatter search and its generalized form path relinking. We first describe a basic design to give the reader the tools to create relatively simple implementations. More advanced designs derive from the fact that scatter search and path relinking are also intimately related to the tabu search (TS) metaheuristic, and gain additional advantage by making use of TS adaptive memory and associated memory-exploiting mechanisms capable of being tailored to particular contexts. These and other advanced processes described in the paper facilitate the creation of sophisticated implementations for hard problems that often arise in practical settings. Due to their flexibility and proven effectiveness, scatter search and path relinking can be successfully adapted to tackle optimization problems spanning a wide range of applications and a diverse collection of structures, as shown in the papers of this volume.

MSC:
90C59Approximation methods and heuristics
90B40Search theory (optimization)