zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Integrable theory of the perturbation equations. (English) Zbl 1080.37578
Summary: An integrable theory is developed for the perturbation equations engendered from small disturbances of solutions. It includes various integrable properties of the perturbation equations, such as hereditary recursion operators, master symmetries, linear representations (Lax and zero curvature representations) and Hamiltonian structures, and provides us with a method of generating hereditary operators, Hamiltonian operators and symplectic operators starting from the known ones. The resulting perturbation equations give rise to a sort of integrable coupling of soliton equations. Two examples (MKdV hierarchy and KP equation) are carefully carried out.

MSC:
37J35Completely integrable systems, topological structure of phase space, integration methods
35Q53KdV-like (Korteweg-de Vries) equations
37J40Perturbations, normal forms, small divisors, KAM theory, Arnol’d diffusion