zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Gel’fand model for a Weyl group of type D n and the branching rules D n B n . (English) Zbl 1081.20052
Summary: A Gel’fand model for a finite group G is a complex representation of G which is isomorphic to the direct sum of all the irreducible representations of G [see J. Soto-Andrade, Proc. Symp. Pure Math. 47, 305-316 (1987; Zbl 0652.20047)]. Gel’fand models for the symmetric group, Weyl groups of type B n and the linear group over a finite field can be found in [C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras. Wiley, New York (1988; Zbl 0634.20001), J. L. Aguado and J. O. Araujo, Commun. Algebra 29, No. 4, 1841-1851 (2001; Zbl 1015.20009), J. O. Araujo, Beitr. Algebra Geom. 44, No. 2, 359-373 (2003; Zbl 1063.20008), A. A. Klyachko, Mat. Sb., N. Ser. 120(162), No. 3, 371-376 (1983; Zbl 0526.20033)]. When K is a field of characteristic zero and G is a finite subgroup of the linear group, we give a finite-dimensional K-subspace 𝒩 G of the polynomial ring K[x 1 ,,x n ]. If G is a Weyl group of type A n or B n [see N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie. Chapitre IV, V et VI: Groupes de Coxeter et systèmes de Tits. Groupes engendrés par des réflexions. Systèmes de racines. Paris: Hermann (1968; Zbl 0186.33001)], 𝒩 G provides a Gel’fand model for these groups as shown in [J. L. Aguado and J. O. Araujo, loc. cit. and J. O. Araujo, loc. cit.]. In this work we show that if G is a Weyl group of type D 2n+1 , 𝒩 D 2n+1 provides a Gel’fand model for this group. We also describe completely 𝒩 D 2n but this is not a Gel’fand model for a Weyl group of type D 2n , instead a subspace of 𝒩 D 2n , 𝒩 ˜ D 2n is a Gel’fand model. We also give simple proofs of the branching rules D n B n , a generator for each simple D n -module and a formula for the dimension for all the simple B n -modules and all the simple D n -modules.
20G05Representation theory of linear algebraic groups
20F55Reflection groups; Coxeter groups