zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic analysis of the primitive equations under the small depth assumption. (English) Zbl 1081.35080
Summary: We study the asymptotic behavior of solutions of the primitive equations (PEs) as the depth of the domain goes to zero. We prove that the solutions of the PEs can be expanded as a sum of barotropic flow and baroclinic flow up to a uniformly bounded (in time and space) initial time layer. The barotropic flow is solution of the 2D Navier-Stokes equations with Coriolis force coupled with density. By employing a comparison theorem, the baroclinic flow can be approximated by a quasi-stationary nonlinear GFD-Stokes problem. This article presents a mathematically rigorous justification that the barotropic flow dominates the baroclinic flow in the motion of the atmosphere and ocean.
35Q30Stokes and Navier-Stokes equations
86A05Hydrology, hydrography, oceanography
86A10Meteorology and atmospheric physics