zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Spectral decomposition of tent maps using symmetry considerations. (English) Zbl 1081.37501
Summary: The spectral decomposition of the Frobenius-Perron operator of maps composed of many tents is determined from symmetry considerations. The eigenstates involve Euler as well as Bernoulli polynomials.
37A30Ergodic theorems, spectral theory, Markov operators
37C25Fixed points, periodic points, fixed-point index theory
37C30Functional analytic techniques in dynamical systems
[1]A. Lasota and M. Mackey,Probabilistic properties of Deterministic Systems (Cambridge University Press, Cambridge, 1985).
[2]W. C. Saphir and H. H. Hasegawa, Spectral representations of the Bernoulli map,Phys. Lett. A 171:317 (1992); H. H. Hasegawa and D. J. Driebe, Spectral determination and physical conditions for a class of chaotic piecewise-linear maps,Phys. Lett. A 176:193 (1993); I. Antoniou and S. Tasaki, Spectral decomposition of the Renyi map,J. Phys. A 26:73 (1993). · doi:10.1016/0375-9601(92)90650-B
[3]H. H. Hasegawa and W. C. Saphir, Unitarity and irreversibility in chaotic systems,Phys. Ret. A 46:7401 (1992); P. Gaspard,r-Adic one-dimensional maps and the Euler summation formula,J. Phys. A 25:L483 (1992). · doi:10.1103/PhysRevA.46.7401
[4]H. H. Hasegawa and D. J. Driebe, Intrinsic irreversibility and the validity of the kinetic description of chaotic systems.Phys. Rev. E 50:1781 (1994); I. Antoniou and S. Tasaki, Generalized spectral decomposition of the β-adic baker’s transformation and intrinsic irreversibility,Physica A 190:303 (1992): I. Antoniou and S. Tasaki, Generalized spectral decompositions of mixing dynamical systems,Int. J. Quantum Chem.46:425 (1993). · doi:10.1103/PhysRevE.50.1781
[5]D. J. Driebe and G. E. Ordóñez, Using symmetries of the Frobenius-Perron operator to determine spectral decompositions,Phys. Lett. A 211:204 (1996). · Zbl 1060.37500 · doi:10.1016/0375-9601(96)00006-0
[6]P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford University Press, London, 1958).
[7]M. Abramowitz and I. A. Stegun, eds.Handbook of Mathematical Functions (Dover, Publications New York, 1972).