zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point. (English) Zbl 1081.47069
Summary: The existence of fixed points of multivalued mappings that satisfy a certain contractive condition was proved by N. Mizoguchi and W. Takahashi [J. Math. Anal. Appl. 141, No. 1, 177–188 (1989; Zbl 0688.54028)]. An alternative proof of this theorem was given by P. Z. Daffer and H. Kaneko [J. Math. Anal. Appl. 192, No. 2, 655–666 (1995; Zbl 0835.54028)]. In the present paper, we give a simple proof of that theorem. Also, we define Mann and Ishikawa iterates for a multivalued map T with a fixed point p and prove that these iterates converge to a fixed point q of T under certain conditions. This fixed point q may be different from p. To illustrate this phenomenon, an example is given.

MSC:
47J25Iterative procedures (nonlinear operator equations)
47H04Set-valued operators
47H10Fixed point theorems for nonlinear operators on topological linear spaces
54H25Fixed-point and coincidence theorems in topological spaces
References:
[1]P. Z. Daffer and H. Kaneko: Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 192 (1995), 655–666. · Zbl 0835.54028 · doi:10.1006/jmaa.1995.1194
[2]R. L. Franks and R. P. Marzec: A theorem on mean value iterations. Proc. Amer. Math. Soc. 30 (1971), 324–326. · doi:10.1090/S0002-9939-1971-0280656-9
[3]S. Ishikawa: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. · doi:10.1090/S0002-9939-1974-0336469-5
[4]A. K. Kalinde and B. E. Rhoades: Fixed point Ishikawa iterations. J. Math. Anal. Appl. 170 (1992), 600–606. · Zbl 0765.65053 · doi:10.1016/0022-247X(92)90040-K
[5]H. Kaneko: Generalized contractive multi-valued mappings and their fixed points. Math. Japon. 33 (1988), 57–64.
[6]W. R. Mann: Mean value methods in iterations. Proc. Amer. Math. Soc. 4 (1953), 506–510. · doi:10.1090/S0002-9939-1953-0054846-3
[7]N. Mizoguchi and W. Takahashi: Fixed point theorems for multi-valued mappings on complete metric spaces. J. Math. Anal. Appl. 141 (1989), 177–188. · Zbl 0688.54028 · doi:10.1016/0022-247X(89)90214-X
[8]Liu Qihou: On Naimpally and Singh’s open questions. J. Math. Anal. Appl. 124 (1987), 157–164. · Zbl 0625.47044 · doi:10.1016/0022-247X(87)90031-X
[9]Liu Qihou: A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings. J. Math. Anal. Appl. 146 (1990), 301–305. · Zbl 0721.47042 · doi:10.1016/0022-247X(90)90303-W
[10]B. E. Rhoades: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56 (1976), 741–750. · Zbl 0353.47029 · doi:10.1016/0022-247X(76)90038-X